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The fluctuation-dissipation theorem is not expected to hold for systems that 
either violate detailed balance or have time-dependent or nonpotential forces, 
Therefore the relation between response and correlation functions should have 
contributions due to the nonequilibrium nature. An explicit formula for such a 
contribution is calculated, which in the present derivation appears as a history- 
dependent term. These relations are the Ward-Takahashi identities of a super- 
symmetric formulation of the Langevin models, and the new term results from 
a broken supersymmetry. 
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1. I N T R O D U C T I O N  

While there is already a large amount of information about systems near 
equilibrium, correspondingly little is known about those far from equi- 
librium. In particular, for equilibrium systems we know the distribution 
function for fluctuations, as well as identities relating the correlation of 
fluctuations to dissipation, known as the fluctuation-dissipation theorem 
(FDT) of the first kind. (1'2) In nonequilibrium systems, neither the distribu- 
tion function nor any explicit (and general) relations amongst correlations 
have been found. 

In near-equilibrium systems modeled by Langevin equations, it can be 
shown that the property of time-reversal invariance (TRI) leads to detailed 
balance (DB), from which the FDT fo l lows.  (3'4) Thus in nonequilibrium 
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systems that violate TRI or DB, it is expected that the F D T will be 
violated. To the author's knowledge, the only times such identities have 
been found for systems violating DB were in relatively simple special 
cases.~5'6) There has also been a rather abstract but general work discussing 
the existence of the FDT for nonequilibrium systems, ~7~ but it seems that 
no explicit identities have resulted from it. Finally, in another work ~5) the 
recognition that SUSY must be broken for a system out of equilibrium was 
made. However, they did not fully exploit this realization to derive the 
identities found here. 

In this paper I calculate explicit identities relating the correlation and 
response functions for several nonequilibrium models. Working from a 
field-theoretic formulation and utilizing a broken supersymmetry (SUSY), 
I find Ward-Takahashi  identities (WTIs) ~8) that describe these systems. 
They consist of the usual FDT plus a new contribution due to terms which 
keep the system from equilibrium. These terms are not incorporated into 
the usual equilibrium distribution and seem to participate as additional 
sources in the system, acting on the same level as thermal fluctuations. 

Three fairly general nonequilibrium models are considered here, and 
the above-mentioned WTIs are calculated for each. The first example 
is a spin system forced from equilibrium by a time-dependent external 
field. ~9-~) Such a system specifically models experiments on phase trans- 
itions ~t2) and even industrial machinery2; is also acts as a paradigm for 
general systems under time-dependent fields. The second example is a 
generic Langevin model with forces violating detailed balance. This case 
has many examples, including Ising spin glasses, ~13) neural nets with 
asymmetric bonds, ~14) and fluids under shear flow. ~15) Finally, I derive a 
generalized F DT for a driven diffusive system (see ref. 16 for review), i.e., 
a conserved order parameter under the influence of an external electric 
field; it is meant to model fast ionic conductors (see, e.g., ref. 17). The 
applicability of this approach for mode-coupling ~18) models is also discssed. 

The existence of a hidden SUSY ion Langevin equations describing 
equilibrium systems has been known for some timeJ ~9~ SUSY is actually 
composed of two independent symmetries, a BRS ~2~ symmetry and a 
second, fermionic symmetry (see explanation in ref. 21). In quite general 
terms, the generating functional for correlations of fields (denoted 
collectively by ~, with source Y-) is 

(1) 

2 Machinery that is very similar to this system, which is used to thermally anneal metallic 
parts, is produced by Magnatech, Inc., 5790 Fenno Road, Bettendorf, Iowa 55272. 
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where S is the action. An infinitesimal linear variation of the fields [i.e., 
6W(~) ]  causes the action to vary by 6S(7~), and quite directly leads to 3 

(2) 

Here ( . ) 3 -  denotes a noise average with sources J -  present ( ( - )  is defined 
as ( - ) j _ o ) .  Systems that are invariant under this linear transformation 
have 6 S = 0 ,  and are said to possess one or the other symmetry. In the 
examples considered here, I find that 5S = 0 for the BRS symmetry, which 
is expected since this symmetry is associated with causality. However, for 
the second fermionic symmetry, (6S)~-r  for each example. This is also 
sensible, since this symmetry seems to be linked with detailed balance, 
although the exact relationship has never been elucidated. However, it is 
known that potentiality conditions are needed to be able to write the 
action in supersymmetric form. In any case, from Eq. (2) identities between 
correlation functions can be bound in the usual way. One differentiates the 
equation with respect to the appropriate sources (at different points), and 
then sets all sources to zero. 

2. O S C I L L A T I N G  M A G N E T I C  FIELD 

In this case I consider the fluctuations of a spin system forced from 
equilibrium by the time-dependent external field h(t). For this particular 
case the external field is coupled linearly to the spin order parameter  field 
~(r, t). The system is modeled by the time-dependent Ginzburg-Landau 
equation (TDGL)  (18) 

6H 
= - t o  - G +  v (3) 

pi-- f  d'~r {~[ro~e+(v~):]+~-~4-h( t )~ t}  (4) 

with zero-mean equilibrium noise correlations given by (v(x)v(x ' ) )= 
2Fo6(X-X' ), x - ( r ,  t). In the following I will focus on the special case 
h( t ) = h cos (2t. 

3 For general linear transformations it is possible to have a field-independent contribution 
from the Jacobian of transformation, However, in most cases it will not contribute to a WTI, 
since the equation usually first has to be differentiated with respect to sources. But in any 
case, this is not an issue for the BRS and fermionic symmetries, since the Jacobian does not 
contribute to Eq. (2). 
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Once the system relaxes from its initial conditions, it settles into a 
periodic state M(t), with period 2rc/O. A steady state may be projected 
from this by either considering timeslices every 2n/g2, or by putting the 
theory on a lattice, treating M(t) integrated over one period as the field 
variable. However, since it is the fluctuations about M(t) which are of 
primary interest, I shift O~O+M(t) and define M(t) through the 
condition ( ~ ) =  0. The model now reads 

6A 
at~ -Fo -~-- F[M] + v (5) 

6A 
--~ = (r o - V 2 ) 0  + Uo(O 3 + 302M+ 3ffM 2) (6) 

F[ M] = 6~tM + Fo[ roM + Uo M3 -- h(t)] (7) 

now measures deviations about M(t). In this nonlinear case there remain 
time-dependent terms in the restoring force 6A/6~. These will govern 
relaxations of thermal fluctuations, and thus it is seen there is a lack of TRI 
in the system. Because TRI implies DB, which in turn implies the FDT of 
the first kind, a violation of the FDT is expected. It is for this reason that 
the following field-theoretic approach to calculating amendments to the 
FDT is considered. 

The convenience of introducing auxiliary fields as bookkeeping devices 
ie a perturbation expansion has long been realized. Using such an 
approach on this system, one can write the generating functional for the 
spin field ~v the response (or MSR ~22'23)) field t}, and two anticommuting 
(Grassmann (24)) fields C and C [defining Cx = C(r, t)]: 

zrJ, Z K, ~] = ~ ~ ,  ~(d,) ~C ~C 

x e x p ( - S + f  lJO+Y~+KC+KC]) (8) 

6A + r ) -  ro?/,2 

 2A_ I cx} (91 

In addition, appropriate source terms are introduced for each field. As is 
well known, a symmetry in the action can often be used to derive nonoper- 
turbative identities. For Langevin equations, it is known there are two such 
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symmetries, one of which only becomes obvious when the action is written 
in superspace. Proceeding in that direction with the superfietd 

0 = 4, + Oc + Co + 0o~ (10) 

where 0, 0 are anticommuting (Grassmann) coordinates,we find that the 
action becomes 

For equilibrium theories the action possesses a translational invariance 
in 0 as well as a sort of Galilean invariance involving 0, 0, and t. The 
generators for these symmetries are Q = c~ 0 and Q' = ~0 + (O/Fo)~, respec- 
tively, which together generate the supersymmetry. That is, if the fields are 
varied by 6r  (eQ+ Q'e')r and then compensated with the coordinate 
transformation 

(O,O,t)~ O+e',O-e,t+e' (12) 

the form of the action is recovered. It is easily shown that the Jacobian of 
this transformation is one. 

As mentioned earlier, these symmetries may be used to derive WTIs. 
The symmetry with generator Q (a BRS symmetry) yields the equation (25) 

f ax  < J C - k ~ ) ~ = o  (13) 

By differentiating with respect to J2 and K1 [-where J2 = J(r2, t2), etc.], and 
then setting the sources to zero, it follows that < C I C 2 ) =  - ( 4 ` ~ 2 ) ,  as 
well as other identities such as ( ~ C ) =  (t~C> = {4`C)= ( C ) =  (4`)--0.  
The first identity ensures that closed loops of propagators oc0(0) [0(x) is 
the Heaviside function] cancel in a perturbation expansion. When ~b 
is varied with Q' and then is followed by a compensating coordinate 
transformation, the action changes by an amount (due to the coordinate 
transformation) 

0 6A 
g(4`)= X t - - - -  (14) 

aM 60 

which by definition breaks SUSY (the overdot denotes time differentia- 
tion). The form of this term makes it clear that it is the explicit time 
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dependence in M(t) which is responsible for this symmetry breaking. 
Similar to before, the following equation may be derived: 

�9 dx K ~ 1 t 

Differentiating this with respect to J2  and K~ and then setting the sources 
to zero, I find the following equation 

( ; (' )) 
F ,  ~ l 

which contains the equilibrium FDT on the LHS, 4 plus a new contribution 
on the RHS. In this model ~ ( ~ ) =  3Uo[~/~2 + 2MX/~]. 

The lowest order contribution to the RHS of Eq. (16) comes from the 
only possible Wick factorization. Using ( i f ) = 0 ,  the RHS becomes, at 
lowest order, - ~  dx (~ll}x)(~-(~x)~O2). Evaluated to C(u2), this equals 

- 3uoCo(tl, t2) M2(tl) + 6U0Fo f dt' Go(t1, t') Go(t2, t') M2(t ') + (fi ( u~ ) 

(17) 

and agrees with a calculation of the LHS of Eq. (16) to the same order. 
Here Go(t2, t~) is the response function O(t2- t l )e  -~ Co(tl, t2) is the 
correlation function (Fo/COco)[Go(tl, t2)+Go(t2, tl)],  and cO=roF o. As 
required, the above expression vanishes if M(t) is constant. Also, it is not 
so useful to Fourier transform this, since it is no longer true that 
(~9o~bo~2) oc 6(o) 1 + o22) , due to the time dependence in 6A/6~. 

A cursory analysis of thihs equation shows that the spontaneous fluc- 
tuations are still limited by the "pliability" of the system, which can be 
measured by finding the response to an external disturbance. Then the new 
equation merely expresses the complication of broken time-translational 
invariance. In our models there is a broken DB, which, when unbroken, is 
the statement that the flux of probability between any two states vanishes. 
This is a sufficient condition to ensure that the rate of change of the 
population P of a given state n vanishes, i.e., 

e,p.=Z(J,,.-J.,.)=0 (18) 
n '  

where Jab is the flux of probability from state b to a. Loosely speaking, one 
can say that the fluctuations cancel in such a way that the equilibrium 

4 In equilibrium the F DT  has been derived via SUSY in refs. 26. 
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distribution is recovered. Hence in a measurement of (1~2~1) O(t2--tl) 
[-or essentially (~P2vl)], there should not be a contribution from times 
before tl. It is easy to see that this is guaranteed by the usual F D T 

O ( t 2  - -  t1)(~t2~l ) ~ (@2~1) (19) 

whose RHS is essentially built of propagators that can only evolve forward 
in time. However, in a system that violates DB, there is a residual flux (i.e., 
Jnn ' -  J.'n v a 0) which, although it may cancel after summing over n', is still 
present in the system. Based on our equation, it seems that perhaps the 
term can be thought of as source in the system, stirring it up and keeping 
it out of equilibrium. Since this source is presumably present at all times, 
it has the potential to influence spontaneous fluctuations at later times. 
This is an explanation for why the additional term in Eq. (16) is integrated 
over the history of the system. Finally, it is possible to derive other 
identities from Eq. (15) that show more explicitly how the nonequilibrium 
terms "stir" the system. Differentiating the equation with respect to K1, we 
get 

( d/1) = Fo I C, f dx C[-P/Fo + g(O)] ) (20) 

which of course would vanish in an equilibrium theory. 
Before proceeding on to the following subsection, the general 

approach for finding WTIs is recapitulated, as it will be of use for the next 
two examples. For  models of the form 

0,~o = -FF(q)) + v (21) 

( vxvx,) = 2Fb(x - x') (22) 

it is possible to derive an MSR action and then rewrite it in superspace as 

S= f dO dO f dx {Dq~D'(~- VO-~ F((~)} (23) 

where ~b is the usual superfield and D = Q0, D' = (00, - FOo). In the special 
case where F(~b) can be written as 6H/6~, the action takes the form 

S = f  dtfdOdO{f ddrDqJD'q}-VH(O)} (24) 

This form is clearly supersymmetric; it is possible to vary the coordinates 
according to Eq. (12) (under which D, D' are invariant) and then vary the 
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fields to cancel the induced field transformation. If there is an explicit time 
dependence in F, then a contribution due to the coordinate transformation 
will not cancel against the field variation, thus breaking SUSY (or really 
just the second fermionic symmetry). Likewise, if Eq. (23) cannot be 
rewritten into the form of Eq. (24), then the lone factor of 0 ruins the 
second symmetry, and so again SUSY is broken; this is known to occur for 
systemms lacking DB, for example. But in either case the BRS symmetry 
is maintained, which is what one would expect, since causality is still 
present in these nonequilibrium models. Finally, since it is now apparent 
how extra terms come about from a broken SUSY, it will no longer be 
necessary to rewrite the action in terms of superfields; instead the four 
independent fields may be varied appropriately. This is the approach that 
will be taken on the remaining examples. 

Power  Dissipation 

Quite generally, when a force f ( t )  is applied to a system that is 
otherwise at equilibrium, a power (per unit volume) f ( t )  OtRi(t ) is 
expended, where R / ( t )=~ '  dt' X(t, t ' ) f( t ' )  and X is the susceptibility; this 
holds independent of any linearity assumptions on X. However, in the case 
when there is already an external field h(t) present, the power that is 
dissipated due to f ( t )  equals 

p(t) = (h + f )  c~tRh+f-hOtR h (25) 

= (h + f )  O,[Rh+f-- Rh] +f3tRh (26) 

It can be shown (at a perturbative level) in this model that Rh+ f -  R h is 
the response to f ( t )  about the periodic state M-(t). Now, the susceptibility 
about the equilibrium state can be measured and gives Rh. When (h + f )  
is being applied, p(t) can be measured and thus the susceptibility about the 
periodic state can be measured. This can be used, in conjunction with a 
measurement of ( ~  ~2) (via inelastic scattering), to measure the new term 
that amends the usual FDT. 

In the equilibrium case the power dissipated can be related to the 
imaginary part of the susceptibility, and so the name of the fluctuation- 
dissipation theorem is justified. Here such a simple relation does not exist 
for a system forced from equilibrium by a time-dependent external field. As 
already mentioned, in nonequilibrium systems a spontaneous fluctuation is 
compresed not only of a response to a thermal fluctuation, but also a 
history-dependent term that is related to a violation of DB. 
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3. NONPOTENTIAL FORCES 

As mentioned earlier, there are Langevin models used throughout 
physics that violate DB. Here I consider a rather general form of a model 
with a part (~ :L~ ,~=L~)  5 which satisfies DB and a part (N~) which in 
general does not; in particular, N~ cannot be derived from a potential. The 
model reads 

~,r = -F~  + v~ (27) 

6H 
- F =  = N~(r - L=~ 6~/~ (28) 

( v~(x) ve(x') ) = 2L~6(x- x') (29) 

As done earlier, this problem may be formulated field-theoretically, by 
introducing auxialiary fields. In this case the action is 

L ~J 
(30) 

Before, this would have been written in superspace, and then field and 
coordinate transformations would have been made to elicit WTIs. 6 But 
since it is now known what the appropriate superfield transformation is 
[-i.e., 6~b = (eQ + Q'e')~b], the component form of 6~b, 

6~=eC~ + e'L~C~, 6C~=e'((k~- L,~/~) 
(31) 

may instead be used directly in a variation of S. Doing this leads to two 
equations which can be used to generate WTIs. From the e variation 
follows 

fdx ( J ~ C ~ - K ' ~ ) :  = 0 (32) 

5 The physical importance of this choice was first discussed by Onsager. (27) 
6 By defining ~b'~ = ~b~ + OC~ - C'~ 0 + 00~'~, where t#'~ = La, ~ ~ and C'~ = L/3~ C/~, it is possible to 

write the action as 

S : S SUSY -~- S '  

S S U S e : ; d t f d O d O { L ~ = ~ f d ~ r ~ ( O ~ - ~ ) - H ( ~ ' ) }  

From this it is easily seen that will be an extra term from the shift in 0. This will given the 
same contribution to ( 6 S ) :  as found in Eq. (35). 
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and from the e' variation 

(33) 

where (omitting integration symbols) 

1 -, 6F~ _ (SF~ 62G~ 

This expansion may be reduced down by applying the operator 

6 6 6F~ 
6K 6K 6~6 Lt~6 

to Eq. (32). The result is (again omitting integrations) 

j ~ 6  /~r 

Because (6S)j  vanishes as J - ~ 0 ,  it could be said that the symmetry 
remains intact. However, ( 6 S ) j  is nonvanishing, and so for all intents and 
purposes (with regard to calculating amendments to WTIs), SUSY is 
broken. In any case, through the usual manipulations the following WTI 
may be found: 

( I / t 2 ~ l )  + (IDIL/~2~,3) -- (~t2L[ll~l) 

= - f  dxdy{ C*6N~(x)6q;6(y) L#6C=(x) C~(y)C2) (36) 

which reduces to the usual FDT as N~--+ 0. 
In the special case where N~ = z~r162 the WTI becomes 

1 

(37) 

which contains the usual FDT plus a new contribution on the RHS. This 
choice of F corresponds to a model (6) used to study freezing transitions in 
nonequilibrium systems; in that scenario z~  is a Gaussian zero-mean 
matrix. Also of note is that only the antisymmetric parts of %r contribute 
a new term to the usual FDT, for the symmetric parts could be written as 
part of the Hamiltonian, and therefore not lead to a change in the FDT. 
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The relation of our equation to dissipation in the system seems 
to be obscured, similarly to the previous example. Consider the case 
where the RHS is decoupled, as a lowest-order approximation. After using 
( C 1  C2 ) = - (011~2 ) and Fourier transforming, it becomes 

--i(DC12(fD)+ Z12(O))--)~21(--fD)--(~B~:--~efl))~lfl((2)))~2:~(O) ) (38) 
F 

which now involves the real part of the susceptibility Z12(co)= 
F (01 (m ) r 1 6 2  and the correlation function C12 = (01(~o) r  
Note that since DB does not hold here it is not possible to write Z12(co)= 
gal(e~) and simplify the expression. For  now, it seems the most sensible 
interpretation of this case coincides with the previous example. That is, the 
term which makes the model nonequilibrium does not seem to participate 
in the same way as the other interaction terms; it remains as a source term, 
able top influence correlations at later times. 

As a final example I consider a model that has been used to describe 
fast-ionic conductors, and is known as a driven-diffusive model. 7 Here a 
conserved density is driven to flow in a direction parallel to an external 
field E. Using equilibrium noise correlations, the model reads 

8,r - F  + v (39) 

6H 
- F = D A - ~ -  E.VO + v (40) 

(VxVx,) = --2D A6(x-- x') (41) 

The action for this model is 

The field variations that correspond to SUSY (when E =  0) are 

60= --aC + e'D JC, 6C= -a'(r + D A~ 
(43) 

Similar to as before, these lead to a WTI 

1 
<02~1>-~ <1/12z~r ( 0 1 A r  (44) 

=I dx { (C102~kE.V A C ) -  (ClO2CE.V A~) } 

7 The particular form used for this example follows ref. 28. 

(45) 
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which is here left in a symmetrized form. Aside from an interpretation as 
a residual source term, it is not clear at this point what other physical 
significance may be attributed to the new term. 

Finally, ! mention that the approach by which these WTIs were 
obtained applies equally well to the class of mode-coupling models (see 
Ref. 18 for a list of such models). They include, for example, models of a 
pure fluid at its gas-liquid critical point, as well as models for the critical 
behavior of antiferromagnets and superfluid helium. The standard way of 
writing mode-coupled equations i s  

6H 
0,r = v~(r - L ~  ~ + v~ (46) 

( v~(x) v ~(x') ) = 2 L ~ O ( x -  x') 

where the v~(r are mode-coupling terms that are chosen under certain 
constraints. (29) Just as done earlier, the problem may be cast as a field 
theory and an action written down. Because the above equations are of 
exactly the same form as Eqs. (27)-(29), except with N~(r replaced with 
v~(r it is seen that there indeed is a set of WTIs when mode-coupling 
terms are present; they are given by Eq. (36) with v~ substituted for N~. 

In the special case where v ~ = - M ~  ~H/60~, with M ~  a constant 
(antisymmetric) matrix, the field variations (with R ~  = M ~  + L ~ )  

6r + ~'R~C~, 6C~=~'(r R ~ )  
(47) 

E 
leave 6S= 0 [-proceeding in the same way with R~=R~(~b)  introduces 
new complications]. Following the same procedure as before, it is easy to 
show that 

(r162 q- ( r162 (r  (48) 

This is of the same form (4) as the FDT for the more general case, where R~z 
is a field-dependent matrix. Perhaps a lesson to be learned is that the 
choice of field variations must be made carefully, depending on which 
WTIs are sought. 

4. C O N C L U D I N G  R E M A R K S  

It is well known to practitioners in (and out) of nonequilibrium 
statistical mechanics that the field seriously lacks the theoretical scaffolding 
that has been so useful in corresponding equilibrium theories. What I have 
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done here is derive an analog of an impor tant  result in equilibrium theories 
for these nontrivial  nonequil ibr ium models. The technique may be readily 
applied to other  Langevin models as well. It takes advantage of an 
approximate  SUSY, and leads to nonper tnrbat ive  relations among  correla- 
tion functions. The new expressions I have found, which seem tol generalize 
the F D T  in a sense, are of potential  value in analyzing the models. The 
general interpretat ion made of  the addit ional terms is that  they are, loosely 
speaking, a leftover of  detailed balance. They end up acting as source terms 
which contr ibute at the same level as thermal fluctuations. However,  in 
distinction to noise, their effect must  (in the present formulat ion)  be 
integrated over the history of the system, for all times previous to those 
appearing explicitly in the WTI.  
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